In Situ CO$_2$ Sparging to Neutralize a Caustic Brine Plume and Reduce Mercury Levels

Richard F. Carbonaro, Ph.D., P.E., Mutch Associates, LLC, Ramsey, NJ
Robert D. Mutch, Jr., P.Hg., P.E., Mutch Associates, LLC, Ramsey, NJ
David C. Changa-Moon, Mutch Associates, LLC, Ramsey, NJ
James M. O’Loughlin, P.E., Parsons, Boston, MA
Les Cordone, P.E., Parsons, Syracuse, NY
Ajish Nambiar, P.E., Parsons, Syracuse, NY
Prashant K. Gupta, Honeywell International Inc., Chester, VA

Presented at the
Second Annual RE3 Conference
January 27-29, 2014
Philadelphia, PA
Site Background

- Former chlor-alkali facility
- “Caustic Brine Plume”
 - Depth: 25 to 50 feet bgs
 - pH > 10.5; typically 11 to 12
 - Specific gravity: 1.02-1.05
 - TDS: 30,000 to 60,000 mg/L
 - Mercury: 50 to 1000 μg/L
 - Silica: 50 to 17,000 mg/L
CO₂ Sparging Concept

Injection of CO₂ gas just above the aquifer bottom (the variably-cemented sandstone)

CO₂ reacts with alkali (OH⁻); pH is neutralized & a pH buffer (HCO₃⁻) is produced which prevents excessive pH decline

\[\text{CO}_2 + \text{OH}^- \rightarrow \text{HCO}_3^- \]

When the pH is lowered, mercury is immobilized as mercury sulfide, HgS(s).

Before

After

CO₂ Injection
CO$_2$ Sparging Lab Study

Lab Study Objectives:
- Determine the pH response of CBP water upon sparging with CO$_2$(g)
- Assess the extent of solids production upon pH adjustment with CO$_2$(g)
- Determine the effect of CO$_2$(g) sparging on dissolved metal concentrations.
CO₂ Titration Curves

Sparging Duration (sec.) vs. pH
Proof of Concept Test Area
Proof of Concept Test: Plan View
Pre-Sparge pH and Hg
CO\textsubscript{2} Delivery

CO\textsubscript{2} Trailer

Vaporizer
Sparge Well

Flow Control Valve

Pressure Gage

Sparge well (SW-1)

Flow Meter
Monitoring Well Network

Each monitoring well also equipped with a Solinst Levelogger™ to continuously monitor water levels.

- Monitoring wells with extensions
- Hach continuous-recording pH electrodes and meter
- Sparge well
Typical pH Response in Monitoring Wells

Well: MW-29
Distance from SW-1: 13.5 ft; distance from MW-1C: 21.4 ft
Depth of screen: 30 - 35 ft bgs

Well: MW-519B
Distance from SW-1: 20.8 ft; distance from MW-1C: 15.1 ft
Depth of screen: 42 - 48 ft bgs
Typical Response of Deep, Middle, and Shallow Well Potentiometric Surface

- Peak rise in piezometric surface in basal aquifer
- Gradual decline in piezometric surface once CO₂ channels are fully established
- Rapid decline in piezometric surface upon cessation of sparging
- Rebound in piezometric surface

Water Elevation (ft)

Time of Day
Maximum Level of Groundwater Table in Shallow Satilla Aquifer during Sparging
pH after Two Weeks of Sparging into SW-1
pH after a Third Week of Sparging into MW-1C

Satilla Formation

Variably Cemented Sandstone

Legend:
- pH
- Hg (μg/L)
- % removal

MW-3A
MW-S19A
MW-1
MW-2
MW-11S
MW-115A

MW-11C

MsL

Elevation in Feet Above Mean Sea Level

Horizontal Scale in Feet

Mutch Associates, LLC
Environmental Engineers and Scientists
Mercury/pH Relationship
Long-term Monitoring Results: pH

![Bar chart showing pH levels for different wells and monitoring periods.]

- Pre-sparge (low-flow)
- Pre-sparge (cont. monitoring)
- 1 week (cont. monitoring)
- 1 week (low-flow)
- 3 months (low-flow)
- 6 months (low-flow)

All samples taken from mid-point of well screen unless otherwise noted.

- Indicates top of screen

Well: MW-519B, MW-1C, SW-1, MW-2C, MW-115C
Long-term Monitoring Results: Hg
Conclusions of Proof of Concept Test

- The pH of the CBP within a radial distance of at least 20 feet could be reduced to 6.5-7.0 within 7 days of sparging (8 hrs./day) at approximately 50 scfm
 - A radius of influence of at least 20 feet was achieved at the top of the CBP (approximately 30 ft bgs) and greater than 60 feet at the water table
- Mercury levels declined from 110-120 ug/L to 11-33 ug/L (70 to 90% reductions) two weeks after the sparging
- Significant mounding of potentiometric surfaces was observed, particularly in the deep wells.
 - The piezometric surface in the deep wells rose 3 to 4 feet above ground surface. At its highest, the groundwater table rose to within about one foot of the surface.