Evaluation of Sustained Release Permanganate Treatment of Residual Solvents in Fractured Bedrock

John Sammon, Woodard & Curran, Inc.
Alex Mikszewski, AMEC Environment & Infrastructure, Inc.
Ralph Simon, Woodard & Curran, Inc.
Background

- RemOx® SR (Carus)
 - Sustained-Release Form of Potassium Permanganate
 - Dispersed in Solid, Parrafin Wax Cylinder (1.35” or 2.5”)
 - Dissolves Passively in Groundwater

- Potential Uses
 - Reactive Barrier
 - Residual Source Treatment

Photo courtesy of Carus Corporation
Deployment Methods

- Direct Push Placement
- Or Simply Hang in Wells
 - 300 lb. test nylon string – broke
 - 65 lb. test braided microfilament fishing line – broke
- Stainless steel harness
 - 175 lb. test, 49-strand 7x7 stainless steel fishing leader wire
 - double barrel crimp sleeves
 - 270 lb. stainless steel snap swivels
Deployment and Retrieval Methods

- All deployment methods failed
- Retrieved with wire hook at end of tremie pipe
Why So Much Interest?

- **Liquid Injection is a Pain**
 - Can be labor & equipment intensive (e.g. mixing infrastructure)
 - Permitting and site access can be onerous
 - Multiple injection rounds needed = multiple mobilizations

- **Long-Term, Passive Treatment is Desirable**
 - Minimal O&M, cylinders can last for years
 - Reduces concentrations over the long-term
 - Can provide plume containment without pump & treat
 - Potentially effective in diffusion-limited situations
Conceptual Site Model (CSM)

- Site Use
 - Commercial property – Northwest New Jersey
 - Very limited access to impacted area in rear fire lane

- Hydrogeology
 - Fractured Bedrock
 - Radial Flow Component
 - Relatively Limited Available Data

- Contaminant Fate and Transport
 - Tetrachloroethene is Primary COC
 - Fractured Rock is Complicating Factor
Rationale for Remox® SR Pilot Test

- Evaluate Residual Source Treatment
 - Potential for remediation of moderate residual concentrations of PCE

- Evaluate Plume Containment
 - Prevent further migration
 - Evaluate PRB potential

- Improve CSM
 - Ancillary Benefit: Tracer Test
 - Potential for Back-Calculating GW Flux
 - New Wells = New Discoveries
Pilot Test Design

- Deploy 13 Cylinders in 3 Source Area Wells
- Goal to Have Coverage Over Shallow - Deep Intervals
 - 1 vertical line in well cluster
 - From water table ~ 7’ bgs
 - To 51’ bgs
- Monitoring Program
 - Permanganate field kit (Hach DR 890 Colorimeter supplied and calibrated by Carus)
 - Sampling at 1 month, 4 months, and 6 months from deployment
- Test Conducted Over 6 Months Per Permit-by-Rule authorization
- **Total Cost to Procure & Install Candles $5,000 – 6,000 (Excludes Drilling)**
- Drilling Cost ~5 Times Cost of Media
Pilot Test Implementation

- Twelve Weeks Prior to Cylinder Deployment –
 - Sampled monitoring well network
- Cylinders Deployed
- 1 Month After Cylinder Deployment
 - Sampled monitoring well network
 - Removed, weighed, re-deployed cylinders
- 4 Months After Cylinder Deployment
 - Sampled monitoring well network
 - Removed, weighed, re-deployed cylinders
- 6 months after cylinder deployment
 - Sampled monitoring well network
 - Permanently removed all cylinders
Pilot Test Results: Permanganate Dissolution

MW-1 Permanganate and ORP

CW-3 Permanganate and ORP

MW-11 Permanganate and ORP

CW-4 Permanganate and ORP
Pilot Test Results: Permanganate Dissolution

Legend
- Permanganate (PPM)
- Permanganate Contours
- Parcels

Woodard & Curran
Pilot Test Results: Permanganate as a Tracer

- Clear Preferential Pathways Exist in Fractured Rock
 - Permanganate observed 270 feet away from deployment location after only 172 days (1.6 feet/day)
 - Apparent delayed dissolution – 6 months until concentrations reached > 100 mg/L at any location
- Radial Flow Component
Pilot Test Results: PCE Treatment

- Effective treatment observed at some locations
 - Additional time needed to evaluate down-gradient impacts
 - More widespread source-level concentrations found during drilling may be consuming permanganate
 - Additional time needed to determine what constitutes a “viable” permanganate concentration (e.g. 100 mg/L)
Modeling Permanganate Dissolution

- Carus Decision Support Tool
 - 1D Analytical Model (Wolf, 2013)
 - Input Groundwater Hydraulic Parameters & Cylinder Characteristics
 - Natural Oxidant Demand Rate (NOD) is a Key Parameter
 - Combined Permanganate Release Model & 1D Transport
 - Advection Only with 1st Order NOD-Mediated Decay
 - \textbf{Does Not Simulate Contaminant Reactions}
Modeling Process

Oxidant Release Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Cell Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidant</td>
<td>KMnO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Diameter (inches)</td>
<td>d</td>
<td>1.35</td>
<td>af</td>
</tr>
<tr>
<td>Cylinder Diameter (cm)</td>
<td>d</td>
<td>3.43</td>
<td>af</td>
</tr>
<tr>
<td>Initial Cylinder Radius (cm)</td>
<td>r₀</td>
<td>1.715</td>
<td>af</td>
</tr>
<tr>
<td>Oxidant solubility (g/cm³)</td>
<td>Cₛ</td>
<td>0.03</td>
<td>given</td>
</tr>
<tr>
<td>Mass of Cylinder (g)</td>
<td></td>
<td>815</td>
<td>af</td>
</tr>
<tr>
<td>Mass of MnO₄ (g)</td>
<td></td>
<td>652</td>
<td>af</td>
</tr>
<tr>
<td>% MnO₄ available</td>
<td></td>
<td>0.9</td>
<td>given</td>
</tr>
<tr>
<td>Mass of MnO₄ available (g)</td>
<td></td>
<td>587</td>
<td>af</td>
</tr>
<tr>
<td>Effective diffusion coefficient (cm²/s)</td>
<td>De</td>
<td>4.000E-07</td>
<td>given</td>
</tr>
<tr>
<td>Amount of available oxidant (g/cm³)</td>
<td>A</td>
<td>1.39</td>
<td>af</td>
</tr>
<tr>
<td>Cylinder Height (cm)</td>
<td>h</td>
<td>45.7</td>
<td>given</td>
</tr>
<tr>
<td>Cylinder Volume (cm³)</td>
<td>V</td>
<td>422.2</td>
<td>af</td>
</tr>
<tr>
<td>Cylinder Density (g/cm³)</td>
<td>p</td>
<td>1.9</td>
<td>given</td>
</tr>
<tr>
<td>Molecular Weight of MnO₄ (g/mol or mg/mmol)</td>
<td>mw</td>
<td>119</td>
<td>given</td>
</tr>
</tbody>
</table>

Time and distance of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Cell Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Interest (days)</td>
<td>t</td>
<td>171</td>
<td>sp</td>
</tr>
<tr>
<td>Time Step (days)</td>
<td>Δt</td>
<td>2</td>
<td>given</td>
</tr>
<tr>
<td>Downgradient Distance of interest (ft)</td>
<td>x</td>
<td>20</td>
<td>sp</td>
</tr>
</tbody>
</table>

Site Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Cell Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd order NOD rate (L/mmol-day)</td>
<td>K₂</td>
<td>0.0245</td>
<td>sp</td>
</tr>
<tr>
<td>2nd order NOD rate (L/mg-day)</td>
<td>K₂</td>
<td>2.06E-04</td>
<td>af</td>
</tr>
<tr>
<td>Hydraulic conductivity (cm/s)</td>
<td>K</td>
<td>3.70E-04</td>
<td>sp</td>
</tr>
<tr>
<td>Hydraulic conductivity (cm/d)</td>
<td>K</td>
<td>32.0</td>
<td>af</td>
</tr>
<tr>
<td>Hydraulic gradient (dh/dl)</td>
<td>dh/dl</td>
<td>0.010</td>
<td>sp</td>
</tr>
<tr>
<td>Porosity</td>
<td>n</td>
<td>0.02</td>
<td>sp</td>
</tr>
<tr>
<td>Groundwater Velocity (cm/day)</td>
<td>v</td>
<td>15.98</td>
<td>af</td>
</tr>
<tr>
<td>Cross Sectional Area of Flow (cm²)</td>
<td>CSA</td>
<td>246</td>
<td>af</td>
</tr>
<tr>
<td>Groundwater Flow (L/day)</td>
<td>Qf</td>
<td>3.9</td>
<td>af</td>
</tr>
</tbody>
</table>

Sensitivities

- **GW Velocity**
 - Too Fast (Flushed out)
 - Too Slow (No Dissolution)
- **NOD**
 - > 0.1 L/mmol-day likely prohibitive (Wolf, 2013)

Assumes Homogeneous/Isotropic, Porous Media

Courtesy of Carus Corporation
Modeling Results: Placement Area

Concentration vs. Time in Cylinder Placement Area (1.35" Cylinder)
Modeling Results: 20’ Down-Gradient

Concentration vs. Time 20' Down-Gradient of Cylinder (1.35" Cylinder)
Modeling Cylinder Dissolution

Model Estimate of Cylinder Mass Remaining

Time (Days)

Permanganate Mass Remaining (g)
Model Limitations

- Limitations
 - Dispersivity may be key for this Site (Account for Fractures)
 - Delayed Dissolution in Placement Wells is Hard to Simulate
 - Transient Effects
 - 3D Factors, Reactive Chemistry
 - Need a Way to Track Mass Dissolution in the Field
 - **Weighing Cylinders Does Not Work**
Pilot Test Conclusions

- CSM Updates
 - Additional source area concentrations
 - Radial flow pattern
 - High transmissivity fractures

- Treatment Prospects
 - Some evidence of treatment observed
 - Longer test required to confirm treatability

- Modeling/Bench Testing
 - How many cylinders would be needed?
 - What concentrations in ground water necessary to reduce contaminant concentrations
 - PRB containment vs. source area treatment
Future Directions

- Persulfate/Permanganate Combination
 - In development by Carus

- More Field Data Needed on Dissolution & Ground Water Flow Sweet Spot
 - Too fast (flushes out)/too slow (no dissolution)
 - Effect of NOD (site specific)

- 3D Modeling
 - Need better modeling with reactive chemistry